
CAR-Miner: Mining Exception-Handling
Rules as Sequence Association Rules

Suresh Thummalapenta and Tao Xie

Department of Computer Science

North Carolina State University

Raleigh, USA

This work is supported in part by NSF grant CCF-0725190 and ARO grant W911NF-08-1-0443.

2

2

 Programmers commonly reuse
APIs of existing frameworks or
libraries

– Advantages: High productivity of
development

– Challenges: Complexity and lack of
documentation

– Consequences:
• Programmers spend more efforts in

understanding APIs

• Defects in API client code

Frame
works

Motivation

3

3
3

Code repositories

1 2 N
…

1 2
mining patterns

searching mining
patterns

Code search engine
e.g.,

Open source code
on the web

Eclipse, Linux, …

Traditional approaches

Our new approach

Often lack sufficient relevant data points (Eg. API call sites)

Code repositories

Background

4

Agenda

 Problem

 Example

 CAR-Miner Approach

 Evaluation

 Conclusion

5

 APIs throw exceptions during runtime errors

Example: Session API of Hibernate framework throws HibernateException

 APIs expect client applications to implement recovery actions
after exceptions occur

Example: Session API of Hibernate expect client application to rollback open
uncommitted transactions after HibernateException occurs

 Failure to handle exceptions results in
Fatal issues: Database lock won’t be released if the transaction is not rolled

back

Performance degradation due to resource leaks: 17% increase in the
performance is found in a 34KLOC program after properly handling
exceptions [Weimer and Necula, OOPSLA 04]

Exception Handling

6

 Use specification that describes exception-handling behavior and
detect defects

Problem: Often specifications are not documented

Solution: Mine specifications from existing code bases using APIs

Challenges:
 Limited data points: Existing approaches mine specifications from a

few code bases: lack of sufficient relevant data points may miss
specifications

 Limited expressiveness: Simple specifications are not sufficient to
characterize common exception-handling behaviors: why?

Problem Addressed by CAR-Miner

7

Example

1.1: ...

1.2: OracleDataSource ods = null; Session session = null;

 Connection conn = null; Statement statement = null;

1.3: logger.debug("Starting update");

1.4: try {

1.5: ods = new OracleDataSource();

1.6: ods.setURL("jdbc:oracle:thin:scott/tiger@192.168.1.2:1521:catfish");

1.7: conn = ods.getConnection();

1.8: statement = conn.createStatement();

1.9: statement.executeUpdate("DELETE FROM table1");

1.10: connection.commit(); }

1.11: catch (SQLException se) {

1.13: logger.error("Exception occurred"); }

1.14: finally {

1.15: if(statement != null) { statement.close(); }

1.16: if(conn != null) { conn.close(); }

1.17: if(ods != null) { ods.close(); } }

1.18: }

Scenario 1

 Defect: No rollback done
when SQLException occurs

 Requires specification such
as “Connection should be
rolled back when a
connection is created and
SQLException occurs”

 Q: Should every connection
instance has to be rolled
back when SQLException
occurs?

Missing “conn.rollback()”

8

Example (contd)

2.1: Connection conn = null;

2.2: Statement stmt = null;

2.3: BufferedWriter bw = null; FileWriter fw = null;

2.3: try {

2.4: fw = new FileWriter("output.txt");

2.5: bw = BufferedWriter(fw);

2.6: conn = DriverManager.getConnection("jdbc:pl:db", "ps", "ps");

2.7: Statement stmt = conn.createStatement();

2.8: ResultSet res = stmt.executeQuery("SELECT Path FROM Files");

2.9: while (res.next()) {

2.10: bw.write(res.getString(1));

2.11: }

2.12: res.close();

2.13: } catch(IOException ex) { logger.error("IOException occurred");

2.14: } finally {

2.15: if(stmt != null) stmt.close();

2.16: if(conn != null) conn.close();

2.17: if (bw != null) bw.close();

2.18: }

1.1: ...

1.2: OracleDataSource ods = null; Session session = null;

 Connection conn = null; Statement statement = null;

1.3: logger.debug("Starting update");

1.4: try {

1.5: ods = new OracleDataSource();

1.6: ods.setURL("jdbc:oracle:thin:scott/tiger@192.168.1.2:1521:catfish");

1.7: conn = ods.getConnection();

1.8: statement = conn.createStatement();

1.9: statement.executeUpdate("DELETE FROM table1");

1.10: connection.commit(); }

1.11: catch (SQLException se) {

1.12: if (conn != null) { conn.rollback(); }

1.13: logger.error("Exception occurred"); }

1.14: finally {

1.15: if(statement != null) { statement.close(); }

1.16: if(conn != null) { conn.close(); }

1.17: if(ods != null) { ods.close(); } }

1.18: }

Scenario 2Scenario 1

Specification: “Connection creation => Connection rollback”

 Satisfied by Scenario 1 but not by Scenario 2

 But Scenario 2 has no defect

c

9

 Simple association rules of the form “FCa => FCe” are
not expressive

 Requires more general association rules (sequence
association rules) such as

(FCc1 FCc2) Λ FCa => FCe1, where

FCc1 -> Connection conn = OracleDataSource.getConnection()

FCc2 -> Statement stmt = Connection.createStatement()

FCa -> stmt.executeUpdate()

FCe1 -> conn.rollback()

Example (contd)

10

 Simple association rules of the form “FCa => FCe” are
not expressive

 Requires more general association rules (sequence
association rules) such as

(FCc1 FCc2) Λ FCa => FCe1, where

FCc1 -> Connection conn = OracleDataSource.getConnection()

FCc2 -> Statement stmt = Connection.createStatement()

FCa -> stmt.executeUpdate() //Triggering Action

FCe1 -> conn.rollback()

Example (contd)

11

 Simple association rules of the form “FCa => FCe” are
not expressive

 Requires more general association rules (sequence
association rules) such as

(FCc1 FCc2) Λ FCa => FCe1, where

FCc1 -> Connection conn = OracleDataSource.getConnection()

FCc2 -> Statement stmt = Connection.createStatement()

FCa -> stmt.executeUpdate()

FCe1 -> conn.rollback() //Recovery Action

Example (contd)

12

 Simple association rules of the form “FCa => FCe” are
not expressive

 Requires more general association rules (sequence
association rules) such as

(FCc1 FCc2) Λ FCa => FCe1, where

FCc1 -> Connection conn = OracleDataSource.getConnection()

FCc2 -> Statement stmt = conn.createStatement() //Context

FCa -> stmt.executeUpdate()

FCe1 -> conn.rollback()

Example (contd)

13

CAR-Miner Approach

Input
Application

Check whether there are
any exception-related

defects

Classes and
Functions

Open Source Projects on web

1 2 N
…

…
Exception-Flow

Graphs
Static Traces

Sequence
Association

Rules
Violations

Extract classes
and functions

reused

Issue queries and collect relevant code
examples. Eg: “lang:java

java.sql.Statement executeUpdate”
Construct exception-

flow graphs

Collect static traces

Mine static traces

Detect violations

14

CAR-Miner Approach

Input
Application

Classes and
Functions

Open Source Projects on web

1 2 N
…

…
Exception-Flow

Graphs
Static Traces

Sequence
Association

Rules
Violations

15

Exception-Flow-Graph Construction

 Based on algorithm by Sinha and Harrold (TSE 00)

 Solid: normal execution path, Dotted: exceptional execution path

16

Exception-Flow-Graph Construction

 Prevent infeasible edges using a sound-static analysis, called Jex
[Robillard and Murphy (FSE 99)]

 Jex provides all potential exceptions thrown by a function call

17

CAR-Miner Approach

Input
Application

Classes and
Methods

Open Source Projects on web

1 2 N
…

…
Exception-Flow

Graphs
Static Traces

Sequence
Association

Rules
Violations

18

Static Trace Generation

 Collect static traces with the actions
taken when exceptions occur

 A static trace for Node 7:
“4 -> 5 -> 6 -> 7 -> 15 -> 16 -> 17”

19

Static Trace Generation
 Includes 3 sections:

 Normal function-
call sequence (4
(6 <- 5 <-

 Function call (7)

 Exception
function-call
sequence (15 ->
(17 <- 16

 A static trace for Node 7: “4 -> 5 -> 6 -> 7 -> 15 -> 16 -> 17”

20

Trace Post-Processing

 Identify and remove unrelated function
calls using data-dependency

 “4 -> 5 -> 6 -> 7 -> 15 -> 16 -> 17”

4: FileWriter fw = new FileWriter(“output.txt”)

5: BufferedWriter bw = new BufferedWriter(fw)

...

7: Statement stmt = conn.createStatement()

...

 Filtered sequence “6 -> 7 -> 15 -> 16“

21

CAR-Miner Approach

Input
Application

Classes and
Methods

Open Source Projects on web

1 2 N
…

…
Exception-Flow

Graphs
Static Traces

Sequence
Association

Rules
Violations

22

Static Trace Mining

 Handle traces of each function call (triggering
function call) individually

 Input: Two sequence databases with a one-to-one
mapping

• normal function-call sequences (context)

• exception function-call sequences (recovery)

 Objective: Generate sequence association rules of the
form

(FCc1 ... FCcn) Λ FCa => FCe1 ... FCen
Context Trigger Recovery

23

 Input: Two sequence databases with a one-to-one mapping

Mining Problem Definition

 Objective: To get association rules of the form
FC1 FC2 ... FCm -> FE1 FE2 ... FEn

where {FC1, FC2, ..., Fcm} Є SDB1 and {FE1, FE2, ..., Fen} Є SDB2

 Existing association rule mining algorithms cannot be directly
applied on multiple sequence databases

Context Recovery

24

 Annotate the sequences to get a single combined database

Mining Problem Solution

 Apply frequent subsequence mining algorithm [Wang and Han,
ICDE 04] to get frequent sequences

 Transform mined sequences into sequence association rules

 Rank rules based on the support assigned by frequent
subsequence mining algorithm

(3 10) Λ FCa => (2 8)
Context Trigger Recovery

25

CAR-Miner Approach

Input
Application

Classes and
Methods

Open Source Projects on web

1 2 N
…

…
Exception-Flow

Graphs
Static Traces

Sequence
Association

Rules
Violations

26

Violation Detection

 Analyse each call site of triggering function call
in input application to detect potential
violations

 Extract context function call sequence from the
beginning of the function to the call site, say
“CC1 CC2 ... CCn”

 If FCc1 ... FCcn is a sub-sequence of CC1 CC2 ...
CCn
 Report any missing function calls of { FCe1 ... FCen } in

any exception path as violations

27

Evaluation

 Research Questions:

1) Do the mined rules represent real rules?
2) Do the detected violations represent real

defects?
– Does CAR-Miner perform better than

WN-miner [Weimer and Necula, TACAS 05]?
1) Do the sequence association rules help

detect new defects?

28

Subjects

 Internal Info: classes and methods belonging to the
application

 External Info: classes and methods used by the application

 Code examples: amount of code collected through code
search engine

29

RQ1: Real Rules

Real rules: 55% (Total: 294)

Usage patterns: 3%

False positives: 43%

 Do the mined rules represent real rules?

30

RQ1: Distribution of Real Rules for Axion

 Number of false positives is quite low between 1 to 60 rules

 Distribution of rules based on ranks assigned by CAR-Miner

31

RQ2: Detected Violations

 Do the detected violations represent real defects?

 Total number of defects: 160

 New defects not found by WN-Miner approach: 87

32

RQ2: Status of Detected Violations

 HsqlDB developers responded on the first 10 reported
defects
 Accepted 7 defects

 Rejected 3 defects

 Reason given by HsqlDB developers for rejected defects:

“Although it can throw exceptions in general, it should not throw with
HsqlDB, So it is fine”

33

RQ3: Comparison with WN-miner
 Does CAR-Miner performs better than WN-miner?

 Found 224 new rules and missed 32 rules

 CAR-Miner detected most of the rules mined by WN-miner

 Two major factors:
 sequence association rules

 Increase in the data scope

34

RQ4: New defects by sequence association rules

 Detected 21 new real defects among all applications

 Do the sequence association rules detect new defects?

35

Conclusion

 Problem-driven methodology for advancing mining software
engineering data by identifying

 new problems, patterns

 mining algorithms, defects

 CAR-Miner mines sequence association rules of the form

(FCc1 ... FCcn) Λ FCa => (FCe1 ... Fcen)
Context Trigger Recovery

 Future work: Exploit synergy between mining and testing

 Test generation to dynamically confirm violations

 Mine method-call sequences for test generation

36

Thank You

